Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Cell Commun Signal ; 22(1): 235, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643161

RESUMEN

BACKGROUND: Antral follicles consist of an oocyte cumulus complex surrounding by somatic cells, including mural granulosa cells as the inner layer and theca cells as the outsider layer. The communications between oocytes and granulosa cells have been extensively explored in in vitro studies, however, the role of oocyte-derived factor GDF9 on in vivo antral follicle development remains elusive due to lack of an appropriate animal model. Clinically, the phenotype of GDF9 variants needs to be determined. METHODS: Whole-exome sequencing (WES) was performed on two unrelated infertile women characterized by an early rise of estradiol level and defect in follicle enlargement. Besides, WES data on 1,039 women undergoing ART treatment were collected. A Gdf9Q308X/S415T mouse model was generated based on the variant found in one of the patients. RESULTS: Two probands with bi-allelic GDF9 variants (GDF9His209GlnfsTer6/S428T, GDF9Q321X/S428T) and eight GDF9S428T heterozygotes with normal ovarian response were identified. In vitro experiments confirmed that these variants caused reduction of GDF9 secretion, and/or alleviation in BMP15 binding. Gdf9Q308X/S415T mouse model was constructed, which recapitulated the phenotypes in probands with abnormal estrogen secretion and defected follicle enlargement. Further experiments in mouse model showed an earlier expression of STAR in small antral follicles and decreased proliferative capacity in large antral follicles. In addition, RNA sequencing of granulosa cells revealed the transcriptomic profiles related to defective follicle enlargement in the Gdf9Q308X/S415T group. One of the downregulated genes, P4HA2 (a collagen related gene), was found to be stimulated by GDF9 protein, which partly explained the phenotype of defective follicle enlargement. CONCLUSIONS: GDF9 bi-allelic variants contributed to the defect in antral follicle development. Oocyte itself participated in the regulation of follicle development through GDF9 paracrine effect, highlighting the essential role of oocyte-derived factors on ovarian response.


Asunto(s)
Infertilidad Femenina , Ratones , Animales , Femenino , Humanos , Infertilidad Femenina/metabolismo , Folículo Ovárico/metabolismo , Oocitos/química , Oocitos/metabolismo , Células de la Granulosa/metabolismo , Estrógenos/metabolismo , Factor 9 de Diferenciación de Crecimiento/genética , Factor 9 de Diferenciación de Crecimiento/análisis , Factor 9 de Diferenciación de Crecimiento/metabolismo
2.
Angew Chem Int Ed Engl ; : e202403068, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687308

RESUMEN

Organic self-assembled molecules (OSAMs) based hole transporting materials play a pivotal role in achieving highly efficient and stable inverted perovskite solar cells (IPSCs). However, the reported carbazol-based OSAMs have serious drawbacks, such as poor solubility in alcohol solution, worse matched energy arrangement with perovskite, and limited molecular species, which greatly limit the device performance. To address above problems, a novel OSAM 4-(3,6-glycol monomethyl ether-9H-carbazol-9-yl) butyl]phosphonic acid (GM-4PACz) was synthesized as hole-transporting material by introducing glycol monomethyl ether (GM) side chains at carbazolyl unit. GM groups enhance the surface energy of Indium Tin Oxide (ITO)/SAM substrate to facilitate the nucleation and growth of up perovskite film, suppress cation defects, release the residual stress at SAM/perovskite interface, and evaluate energy level for matching with perovskite. Consequently, the GM-4PACz based IPSC achieves a champion PCE of 25.52%, a respectable open-circuit voltage (VOC) of 1.21 V, a high stability, possessing 93.29% and 91.75% of their initial efficiency after aging in air for 2000 h or tracking at maximum power point for 1000 h, respectively.

3.
Angew Chem Int Ed Engl ; : e202402831, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532290

RESUMEN

A double-fibril network of the photoactive layer morphology is recognized as an ideal structure facilitating exciton diffusion and charge carrier transport for high-performance organic solar cells (OSCs). However, in the layer-by-layer processed OSCs (LbL-OSCs), polymer donors and small molecule acceptors (SMAs) are separately deposited, and it is challenging to realize a fibril network of pure SMAs with the absence of tight interchain entanglement as polymers. In this work, crystalline small molecule donors (SMDs), named TDZ-3TR and SeDZ-3TR, were designed and introduced into the L8-BO acceptor solution, forcing the phase separation and molecular fibrilization. SeDZ-3TR showed higher crystallinity and lower miscibility with L8-BO acceptor than TDZ-3TR, enabling more driving force to favor the phase separation and better molecular fibrilization of L8-BO. On the other hand, two donor polymers of PM6 and D18 with different fibril widths and lengths were put together to optimize the fibril network of the donor layer. The simultaneously optimization of the acceptor and donor layers resulted in a more ideal double-fibril network of the photoactive layer and an impressive power conversion efficiency (PCE) of 19.38 % in LbL-OSCs.

4.
Adv Mater ; : e2310711, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528777

RESUMEN

Developing an additive to effectively regulate the perovskite crystallization kinetics for the optimized optoelectronic properties of perovskite film plays a vital role in obtaining high efficiency and stable perovskite solar cells (PSCs). Herein, a new additive is designed and directly synthesized in perovskite precursor solution by utilizing an addition reaction between but-3-yn-1-amine hydrochloride (BAH) and formamidinium iodide. It is found that its product may control the intermediate precursor phase for regulating perovskite nucleation, leading to advantageous 2D perovskite to induce growth of perovskite along the preferred [001] orientation with not only released lattice strain but also strong interaction with perovskite to passivate its surface defects. By taking advantage of the above synergistic effects, the optimized PSC delivers an efficiency of 25.19% and a high open-circuit voltage (VOC) of 1.22 V. Additionally, the devices demonstrate good stability, remaining over 90% of their initial efficiencies under ambient atmosphere conditions for 60 days, high temperature of 85 °C for 200 h, or maximum power point tracking for 500 h.

5.
Adv Sci (Weinh) ; : e2401405, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528662

RESUMEN

Volatile solid additives have attracted increasing attention in optimizing the morphology and improving the performance of currently dominated non-fullerene acceptor-based organic solar cells (OSCs). However, the underlying principles governing the rational design of volatile solid additives remain elusive. Herein, a series of efficient volatile solid additives are successfully developed by the crossbreeding effect of chalcogenation and iodination for optimizing the morphology and improving the photovoltaic performances of OSCs. Five benzene derivatives of 1,4-dimethoxybenzene (DOB), 1-iodo-4-methoxybenzene (OIB), 1-iodo-4-methylthiobenzene (SIB), 1,4-dimethylthiobenzene (DSB) and 1,4-diiodobenzene (DIB) are systematically studied, where the widely used DIB is used as the reference. The effect of chalcogenation and iodination on the overall property is comprehensively investigated, which indicates that the versatile functional groups provided various types of noncovalent interactions with the host materials for modulating the morphology. Among them, SIB with the combination of sulphuration and iodination enabled more appropriate interactions with the host blend, giving rise to a highly ordered molecular packing and more favorable morphology. As a result, the binary OSCs based on PM6:L8-BO and PBTz-F:L8-BO as well as the ternary OSCs based on PBTz-F:PM6:L8-BO achieved impressive high PCEs of 18.87%, 18.81% and 19.68%, respectively, which are among the highest values for OSCs.

6.
Adv Mater ; 36(3): e2306990, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37766648

RESUMEN

The limited selection of wide bandgap polymer donors for all-polymer solar cells (all-PSCs) is a bottleneck problem restricting their further development and remains poorly studied. Herein, a new wide bandgap polymer, namely PBBTz-Cl, is designed and synthesized by bridging the benzobisthiazole acceptor block and chlorinated benzodithiophene donor block with thiophene units for application as an electron donor in all-PSCs. PBBTz-Cl not only possesses wide bandgap and deep energy levels but also displays strong absorption, high-planar structure, and good crystallinity, making it a promising candidate for application as a polymer donor in organic solar cells. When paired with the narrow bandgap polymer acceptor PY-IT, a fibril-like morphology forms, which facilitates exciton dissociation and charge transport, contributing to a power conversion efficiency (PCE) of 17.15% of the corresponding all-PSCs. Moreover, when introducing another crystalline polymer acceptor BTP-2T2F into the PBBTz-Cl:PY-IT host blend, the absorption ditch in the range of 600-750 nm is filled, and the blend morphology is further optimized with the trap density reducing. As a result, the ternary blend all-PSCs achieve a significantly improved PCE of 18.60%, which is among the highest values for all-PSCs to date.

7.
Adv Mater ; 36(11): e2308216, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38100817

RESUMEN

The success of Y6-type nonfullerene small molecule acceptors (NF-SMAs) in polymer solar cells (PSCs) can be attributed to their unique honeycomb stacking style, which leads to favorable thin-film morphologies. The intermolecular interactions related to the crystallization tendency of these NF-SMAs is closely governed by their electron accepting end groups. For example, the high performance Y6 derivative L8-BO (BTP-4F) presents three types of stacking modes in contrast to two stacking modes of Y6. Hence, it is ultimately interesting to obtain more insight on the packing properties and the preferences influenced by chemical modifications such as end group engineering. This work designs and synthesizes asymmetric and symmetric L8-BO derivatives with brominated end groups and explores the stacking preferences in various modes. The asymmetric BTP-3FBr displays an optimized crystallization tendency and thin film morphology, leading to a decent power conversion efficiency (PCE) of 18.34% in binary devices and a top PCE of 19.32% in ternary devices containing 15 wt% IDIC as the second acceptor.

8.
Nanomicro Lett ; 15(1): 241, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37917278

RESUMEN

Power-conversion-efficiencies (PCEs) of organic solar cells (OSCs) in laboratory, normally processed by spin-coating technology with toxic halogenated solvents, have reached over 19%. However, there is usually a marked PCE drop when the blade-coating and/or green-solvents toward large-scale printing are used instead, which hampers the practical development of OSCs. Here, a new series of N-alkyl-tailored small molecule acceptors named YR-SeNF with a same molecular main backbone are developed by combining selenium-fused central-core and naphthalene-fused end-group. Thanks to the N-alkyl engineering, NIR-absorbing YR-SeNF series show different crystallinity, packing patterns, and miscibility with polymeric donor. The studies exhibit that the molecular packing, crystallinity, and vertical distribution of active layer morphologies are well optimized by introducing newly designed guest acceptor associated with tailored N-alkyl chains, providing the improved charge transfer dynamics and stability for the PM6:L8-BO:YR-SeNF-based OSCs. As a result, a record-high PCE approaching 19% is achieved in the blade-coating OSCs fabricated from a green-solvent o-xylene with high-boiling point. Notably, ternary OSCs offer robust operating stability under maximum-power-point tracking and well-keep > 80% of the initial PCEs for even over 400 h. Our alkyl-tailored guest acceptor strategy provides a unique approach to develop green-solvent and blade-coating processed high-efficiency and operating stable OSCs, which paves a way for industrial development.

10.
Front Microbiol ; 14: 1181125, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37497541

RESUMEN

Lasso peptides are ribosomally synthesized peptides that undergo post-translational modifications including leader peptide removal by B (or the segregated B1 and B2) proteins and core peptide macrolactamization by C proteins to form a unique lariat topology. A conserved threonine residue at the penultimate position of leader peptide is hitherto found in lasso peptide precursors and shown to be a critical recognition element for effective enzymatic processing. We identified a lasso peptide biosynthetic gene cluster (bsf) from Bradymonas sediminis FA350, a Gram-negative and facultatively prey-dependent bacterium that belongs to a novel bacterial order Bradymonadales in the class Deltaproteobacteria. The kinase BsfK specifically catalyzes the phosphorylation of the precursor peptide BsfA on the Ser3 residue. BsfB1 performs dual functions to accelerate the post-translational phosphorylation and assist BsfB2 in leader peptide removal. Most importantly, the penultimate residue of leader peptide is an isoleucine rather than the conserved threonine and this isoleucine has a marked impact on the phosphorylation of Ser3 as well as leader peptide removal, implying that BsfB1 and BsfB2 exhibit a new substrate selectivity for leader peptide binding and excision. This is the first experimentally validated penultimate isoleucine residue in a lasso peptide precursor to our knowledge. In silico analysis reveals that the leader peptide Ile/Val(-2) residue is rare but not uncommon in phosphorylated lasso peptides, as this residue is also discovered in Acidobacteriaceae and Sphingomonadales in addition to Bradymonadales.

11.
Nanomicro Lett ; 15(1): 70, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36943501

RESUMEN

Perovskite-based tandem solar cells have attracted increasing interest because of its great potential to surpass the Shockley-Queisser limit set for single-junction solar cells. In the tandem architectures, the wide-bandgap (WBG) perovskites act as the front absorber to offer higher open-circuit voltage (VOC) for reduced thermalization losses. Taking advantage of tunable bandgap of the perovskite materials, the WBG perovskites can be easily obtained by substituting halide iodine with bromine, and substituting organic ions FA and MA with Cs. To date, the most concerned issues for the WBG perovskite solar cells (PSCs) are huge VOC deficit and severe photo-induced phase separation. Reducing VOC loss and improving photostability of the WBG PSCs are crucial for further efficiency breakthrough. Recently, scientists have made great efforts to overcome these key issues with tremendous progresses. In this review, we first summarize the recent progress of WBG perovskites from the aspects of compositions, additives, charge transport layers, interfaces and preparation methods. The key factors affecting efficiency and stability are then carefully discussed, which would provide decent guidance to develop highly efficient and stable WBG PSCs for tandem application.

12.
Adv Mater ; 35(16): e2211545, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36731421

RESUMEN

Judicious tailoring of the interface between the SnO2 electron-transport layer and the perovskite buried surface plays a pivotal role in obtaining highly efficient and stable perovskite solar cells (PSCs). Herein, a DL-carnitine hydrochloride (DL) is incorporated into the perovskite/SnO2 interface to suppress the defect-states density. A DL-dimer is obtained at the interface by an intermolecular esterification reaction. For the SnO2 film, the Cl- in the DL-dimer can passivate oxygen vacancies (VO ) through electrostatic coupling, while the N in the DL-dimer can coordinate with the Sn4+ to passivate Sn-related defects. For the perovskite film, the DL-dimer can passivate FA+ defects via hydrogen bonding and Pb-related defects more efficiently than the DL monomer. Upon DL-dimer modification, the interfacial defects are effectively passivated and the quality of the resultant perovskite film is improved. As a result, the DL-treated device achieves a gratifying open-circuit voltage (VOC ) of 1.20 V and a champion power conversion efficiency (PCE) of 25.24%, which is a record value among all the reported FACsPbI3 PSCs to date. In addition, the unencapsulated devices exhibit a charming stability, sustaining 99.20% and 90.00% of their initial PCEs after aging in air for 1200 h and continuously operating at the maximum power point tracking for 500 h, respectively.

13.
Adv Mater ; 35(10): e2210760, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36599710

RESUMEN

Raising the lowest unoccupied molecular orbital (LUMO) energy level of Y-type non-fullerene acceptors can increase the open-circuit voltage (Voc ) and thus the photovoltaic performance of the current top performing polymer solar cells (PSCs). One of the viable routes is demonstrated by the successful Y6 derivative of L8-BO with the branched alkyl chains at the outer side. This will introduce steric hindrance and reduce intermolecular aggregation, thus open up the bandgap and raise the LUMO energy level. To take further advantages of the steric hindrance influence on optoelectronic properties of Y6 derivatives, two Y-type non-fullerene acceptors of BTP-Cy-4F and BTP-Cy-4Cl are designed and synthesized by adopting outer branched side chains and inner cyclohexane side chains. An outstanding Voc of 0.937 V is achieved in the D18:BTP-Cy-4F binary blend devices along with a power conversion efficiency (PCE) of 18.52%. With the addition of BTP-eC9 to extend the absorption spectral coverage, a remarkable PCE of 19.36% is realized finally in the related ternary blend devices, which is one of the highest values for single-junction PSCs at present. The results illustrate the great potential of cyclohexane side chains in constructing high-performance non-fullerene acceptors and their PSCs.

14.
Adv Mater ; 35(12): e2210223, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36622963

RESUMEN

Cesium lead triiodide (CsPbI3 ) is a promising light-absorbing material for constructing perovskite solar cells (PSCs) owing to its favorable bandgap and thermal tolerance. However, the high density of defects in the CsPbI3 film not only act as recombination centers, but also facilitate ion migration, leading to lower PCE and inferior stability compared with the state-of-the-art organic-inorganic hybrid PSC counterpart. Theoretical analyses suggest that the effective suppression of defects in CsPbI3 film is helpful for improving the device performance. Herein, the stable and efficient γ -CsPbI3 PSCs are demonstrated by developing an acyloin ligand (1,2-di(thiophen-2-yl)ethane-1,2-dione (DED)) as a phase stabilizer and defect passivator. The experiment and calculation results confirm that carbonyl and thienyl in DED can synergistically interact with CsPbI3 by forming a chelate to effectively passivate Pb-related defects and further suppress ion migration. Consequently, DED-treated CsPbI3 PSCs yield a champion PCE of 21.15%, which is one of the highest PCE among all the reported CsPbI3 PSCs to date. In addition, the unencapsulated DED-CsPbI3 PSC can retain 94.9% of itsinitial PCE when stored under ambient conditions for 1000 h and 92.8% of its initial PCE under constant illumination for 250 h.

15.
Adv Mater ; 35(6): e2208279, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36411949

RESUMEN

The morphology plays a key role in determining the charge generation and collection process, thus impacting the performances of organic solar cells (OSCs). The limited selection pool of additives to optimize the morphology of OSCs, especially for the emerging layer-by-layer (LbL) OSCs, impeding the improvements of photovoltaic performances. Herein, a new method of using conjugated polymers as the additives to optimize the morphology for improving the photovoltaic performances of LbL-OSCs is reported. Four polymers of PH, PS, PF, and PCl are developed with different side chains. These polymers exhibit poor performances as donor materials and additives in the BHJ devices, due to the unsuitable energy level alignment and unfavorable molecular interactions. By contrast, they can be served as efficient additives to optimize the PM6 fibril matrix for facilitating the penetration of BTP-eC9 and forming an intertwined D/A bicontinuous network with a vertical segregation. Such morphology is optimized by side chain engineering, which enables the progressive improvement of the charge separation and collection. As a result, adding a small amount of PCl as the additive, the optimized morphology contributes to a champion PCE of 19.10% with a high FF of 80.5%.

16.
Small ; 19(2): e2206205, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36399648

RESUMEN

All-inorganic CsPbI3 perovskite solar cells (PSCs) have been extensively studied due to their high thermal stability and unprecedented rise in power conversion efficiency (PCE). Recently, the champion PCE of CsPbI3 PSCs has reached up to 21%; however, it is still much lower than that of organic-inorganic hybrid PSCs. Interface modification to passivate surface defects and minimize charge recombination and trapping is important to further improve the efficiency of CsPbI3 PSCs. Herein, a new zwitterion ion is deposited at the interface between electron transporting layer (ETL) and perovskite layer to passivate the defects therein. The zwitterion ions can not only passivate oxygen vacancy (VO ) and iodine vacancy (VI ) defects, but also improve the band alignment at the ETL-perovskite interface. After the interface treatment, the PCE of CsPbI3 device reaches up to 20.67%, which is among the highest values of CsPbI3 PSCs so far. Due to the defect passivation and hydrophobicity improvement, the PCE of optimized device remains 94% of its original value after 800 h storing under ambient condition. These results provide an efficient way to improve the quality of ETL-perovskite interface by zwitterion ions for achieving high performance inorganic CsPbI3 PSCs.

17.
Reprod Sci ; 30(3): 952-965, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36045247

RESUMEN

Recurrent implantation failure (RIF) is a thorny problem often encountered in the field of assisted reproduction. Existing evidences suggest that immune dysregulation may be involved in the pathogenesis of RIF. The purpose of this study is to explore immune-related genes contributing to RIF through data mining. The endometrial expression profiles of 24 RIF and 24 controls were obtained from the GEO database. The immune infiltration in bulk tissue was estimated by single sample gene set enrichment analysis (ssGSEA) method based on marker gene sets for immune cells generated from endometrial single-cell RNA sequencing data. The results showed that the infiltration levels of B cells and regulatory T cells (Tregs) were significantly reduced in the RIF group. Four hub genes (GJA1, PRKAG2, CPT1A, and ICA1) were identified by integrated analysis of weighted gene co-expression network analysis (WGCNA), random forest and LASSO regression. Moreover, these hub genes were significantly correlated with certain immune-related factors, especially CXCL12, CEACAM1, and XCR1. Single-gene GSEA indicated that the pathways associated with hub genes included the regulation of cell cycle, the process of epithelial-mesenchymal transition and transplant rejection, etc. A predictive model for RIF was constructed based on hub genes and performed well in the training dataset and the other two external datasets. Thus, this study identified immune-related key genes in RIF and provided new biomarkers for early diagnosis.


Asunto(s)
Biología Computacional , Factores de Transcripción , Ciclo Celular , Bases de Datos Factuales , Transición Epitelial-Mesenquimal
18.
Am J Obstet Gynecol MFM ; 5(1): 100752, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36115572

RESUMEN

BACKGROUND: Although live birth rates were comparable between programmed and natural frozen-thawed embryo transfer cycles, recent data showed that pregnancies after programmed cycle were associated with an increased risk of adverse perinatal outcomes, such as hypertensive disorders of pregnancy. Such a difference might be attributed to selection bias because patients with ovulation disorders are more likely to receive programmed endometrial preparation protocol than natural cycle. OBJECTIVE: This study aimed to analyze whether programmed endometrial preparation protocol is associated with an increased risk of adverse perinatal outcomes compared with natural cycle during frozen embryo transfer in ovulatory women. STUDY DESIGN: This regional multicenter retrospective cohort study was conducted in 5 reproductive medical centers in Southeast China. Patients with regular cycles (21-35 days), who underwent either programmed or natural cycle blastocyst frozen embryo transfer and delivered singleton live birth babies after 28 weeks of gestation between 2016 and 2019 were analyzed. Each patient only contributed 1 cycle per cohort. The patients' frozen embryo transfer treatment cycles were linked to their obstetrical medication record, and a comprehensive medical record review was conducted to compare the maternal and neonatal outcomes between natural cycle and programmed cycle. Crude and adjusted odds ratios with 95% confidence intervals were calculated, and adjustment was made for relevant confounders. RESULTS: Study samples included 499 natural cycle frozen embryo transfer cases and 900 programmed frozen embryo transfer cases. Pregnancies after programmed cycle were associated with increased odds of hypertensive disorders of pregnancy (adjusted odds ratio, 2.71; 95% confidence interval, 1.59-4.91) and preeclampsia (adjusted odds ratio, 2.71; 95% confidence interval, 1.17-6.23) compared with pregnancies after natural cycle. No significant difference was detected regarding other adverse perinatal outcomes between the 2 endometrial protocols. In subgroup analysis, both the subgroups of hormone replacement therapy and hormone replacement therapy with gonadotrophin-releasing hormone analogue pretreatment had increased odds of developing hypertensive disorders of pregnancy than the natural cycle group. The risk of developing preeclampsia was higher in the hormone replacement therapy with gonadotrophin-releasing hormone analogue pretreatment subgroup than in the other 2 groups (adjusted odds ratio, 4.99; 95% confidence interval, 1.94-12.82) (aOR, 2.47; 95% CI, 1.17-5.18). CONCLUSION: Pregnancies after programmed frozen embryo transfer were associated with higher risks of hypertensive disorders of pregnancy in ovulatory women. The hormone replacement therapy with gonadotrophin-releasing hormone analogue pretreatment cycle led to the highest risk of preeclampsia among the 3 protocols.


Asunto(s)
Hipertensión Inducida en el Embarazo , Preeclampsia , Embarazo , Recién Nacido , Humanos , Femenino , Hipertensión Inducida en el Embarazo/diagnóstico , Hipertensión Inducida en el Embarazo/epidemiología , Hipertensión Inducida en el Embarazo/etiología , Estudios Retrospectivos , Criopreservación/métodos , Transferencia de Embrión/efectos adversos , Transferencia de Embrión/métodos , Hormonas
19.
Small ; 18(48): e2204733, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36284478

RESUMEN

Suppressing defects at the interface between the TiO2 electron transport layer (ETL) and perovskite film is critical for high efficiency and stable perovskite solar cells (PSCs). Herein, a siloxane derivative diethylphosphatoethylsilicic acid (PSiOH) is developed to modify the interface of TiO2 ETL/FA0.83 Cs0.17 PbI3 perovskite. Comprehensive characteristics reveal that silicon hydroxyl (SiOH) in PSiOH can reduce surface defects, improve the electrical properties and optimize the energy band structure of TiO2 by forming a SiOTi bond, while the phosphate bond (PO) in PSiOH can passivate Pb-related defects on the perovskite bottom surface. Consequently, PSiOH-modified PSCs yield a remarkable power conversation efficiency of 24.20% and improved air, thermal, or illumination stabilities. This study provides insight into passivation defects at the buried interface for efficient and stable PSCs.

20.
Angew Chem Int Ed Engl ; 61(50): e202213252, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36251727

RESUMEN

Side-chain engineering with heteroatoms is not only effective in tuning frontier molecular orbitals, but also possible for forming secondary bonds which can be utilized to planarize the molecular backbone, hence, improving the photon absorption as well as charge-transport abilities of polymer solar-cell (PSC) materials. Herein, two types of unconventional side chains, namely carboxylate and carbamate, containing various heteroatoms are introduced to the thiophene bridges in high performance benzodithiophene (BDT) based donor polymers to from the novel polymers PTzTz-C and PTzTz-N, respectively. In these polymers, non-covalent O⋅⋅⋅S and N⋅⋅⋅H interactions induce a high tendency to aggregation. In a ternary-blend PSC with PTzTz-N added to the high-performance D18 : BTP-eC9 blend, complimentary absorption and improved thin-film morphology were observed with a top power conversion efficiency of 18.76 %, which is an improvement of almost 5 % over the D18 : BTP-eC9 binary blends.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA